Organising Partners

Invited Speakers

Applications of smart monomolecular films in IC microelectronics for organic-inorganic interface engineering


Senior Scientist at imec in the process technology unit. Two masters in physical -chemistry and material science, PhD in microelectronics engineering, plus 15 years’ experience of the material research and microelectronics (focus on chemical mechanical planarization, electro- and electro-less deposition, atomic layer deposition, surface functionalization and thin film deposition and characterization, including novel low-k dielectric materials, such as periodic mesoporous organosilicas (PMOs) and metallorganic frameworks (MOFs)) with a strong blend of technical and scientific expertise. Author and coauthor of over 100 peer-reviewed publications and over 90 international conference contributions.

Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit


Dr. Ora Bitton is an associate staff scientist at Weizmann Institute of Science (WIS), Israel. She received her B.Sc. in physics and computer science in 2007 and Ph. D. in Physics in 2011 at Bar-Ilan university, Israel. Her research area was experimental condensed matter physics with an emphasis on transport properties and applications of nanoscale devices. Her thesis focused on Single Electron Transistors (SETs) based on metallic nanoparticles at a strong coupling regime, a unique regime that has not been experimentally accessed before. In 2011, she joined the faculty of chemistry at WIS, as a staff scientist and head of the Nanofabrication center, a state-of-the-art fabrication facility for interdisciplinary research in nanoscience and applied nanotechnology. Her research activities include: physical properties of low dimensional systems and devices, molecular electronics, nano photonics and plasmonics. In addition, she provides top-level technological and scientific support to different research groups from nano-scale science.

EUV insertion at the N5 node


Victor Blanco received his MSc degree in Physics by university of Zaragoza and Electronic Engineering by university of Valladolid. During his PhD degree at the University of Twente he worked on wafer level CMOS post-processing for sensors applications, followed by a Postdoctoral position at NIKHEF working on gaseous radiation imaging detectors for nuclear physics.
He joined ASML in 2010 working on several topics including defectivity for immersion and EUV lithography, throughput and yield. Since 2015 he works at imec on the Advance Patterning Center to evaluate EUV capabilities for its insertion in BEOL layers.

Scalable Printing of Nano and Microscale Electronics and Wearable Sensors


Ahmed A. Busnaina, Ph.D. is the William Lincoln Smith Chair Professor, Distinguished University Professor and founding Director of National Science Foundation’s Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern University, Boston, MA. Prof. Busnaina is recognized for his work on directed assembly-based printing of micro and nanoscale devices for electronics, sensors, energy, biomedical and materials applications. His research support exceeds $53 million. He authored more than 600 papers in journals, proceedings and conferences in addition to 50 filed and awarded patents. He is an editor of the journal of Microelectronic Engineering and associate editor of the Journal of Nanoparticle Research. He is a fellow of the American Society of Mechanical Engineers, and the Adhesion Society, a Fulbright Senior Scholar.

Nanomechanics for the life sciences


Permanent Researcher at the Microelectronics Institute of Madrid-CSIC, where she has been head of Dept. of Devices, Sensors and Biosensors from 2008 to 2012. Since 2004 she has focused her research in nanomechanical sensing, developing new instrumentation and technologies for the application of nanomechanics to biology. Leaded the ERC Starting Grant project NANOFORCELLS from 2011 to 2016, devoted to cell mechanobiology.

Present research interests are focused on the development of nanomechanical devices to study conformational changes in proteins (ERC Consolidator Grant LIQUIDMASS) and of nanomechanical mass and stiffness spectrometry for virus identification (FET-Pro Active project VIRUSCAN). Inventor of over 10 patents and founder of Mecwins SA and Nanodreams SL. Awarded Miguel Catalán research prize for researchers under 40 years in 2012.

Packaging R&D at NANIUM: Stretching Fan-Out Wafer Level Packaging to New Limits and Markets


André Cardoso started his carrier at Texas Instruments Portugal and worked in the US in R&D for semiconductor equipment.
He joined Infineon, working on FBGA process development and later in Package Development in Dresden. André joined the Packaging R&D at Nanium in 2011, and has been working on 300mm Fan-out Wafer Level Packaging, focusing on new technologies for System-In-Package; Ultra-Thin Packaging; 2.5D and 3D; MEMS integration; and Biomedical applications in Fan-Out technology.
He holds 11 patents and published several papers in multiple research areas.

Fabrication of piezoelectric actuators with a pure twisting response


Professor Elata’s research focuses on modeling and design of MEMS, and on developing new concepts for electrostatic, thermoelastic, piezoelectric and electromagnetic actuators. He serves the MEMS community as a member of the editorial boards of IEEE-JMEMS and IEEE-SENSORS Letters, and as a member of the Technical Program Committees of leading conferences in the field.

Multi-functional systems for cell and organ-on-a-chip developments


Emnéus pursued her academic career at Lund University, Sweden and was recruited as a Professor at DTU Nanotech in 2007 where she now leads the LOC strategic field and Bioanalytics group. She has in the past coordinated 7 EU projects and currently has two Marie Sklodowska Curie ITN projects in H2020, one of which she is coordinating (Training4CRM). She has served as an evaluator and expert panel member of e.g. Swedish and Norwegian Research Councils, EU FP7 environment program and is since 2012 a Life Science panel member for ERC starting grant. She has vast experience of development and application of biosensors and 2D and 3D Lab-on-a-chip devices. Her main research interest is focused on bioanalytical systems (enzymes, antibodies and cells) using multi-parameter detection (optical and electrochemical), and organ-on-a chip system and 3D scaffolds for tissue engineering.

Micro/Nano Systems for Biofilm Exploration and Eradication



Reza Ghodssi is the Herbert Rabin Distinguished Chair in Engineering, Director of the Institute for Systems Research (ISR) and Director of the MEMS Sensors and Actuators Lab (MSAL) in the Department of Electrical and Computer Engineering (ECE) and the Institute for Systems Research (ISR) at the University of Maryland (UMD). Dr. Ghodssi’s research interests are in the design and development of microfabrication technologies and processes in micro/nano/bio devices and systems for chemical and biological sensing, small- scale energy conversion and harvesting with a strong emphasis toward health monitoring applications. Dr. Ghodssi is a Fellow of IEEEAVS, and ASME, a 2014-2015 University of Maryland Distinguished Scholar-Teacher, has over 140 journal publications and 300 refereed conference papers, and is the co-editor of the MEMS Materials and Processes Handbook published in 2011. He is an associate editor for the Journal of Microelectromechanical Systems (JMEMS) and Biomedical Microdevices (BMMD). He has obtained seven U.S. patents, with another eight pending.

Epoxy-based Polymer Networks as a Tool for the Design of New Functional Materials


Cristina E. Hoppe was born in Buenos Aires, Argentina, in 1975. She graduated in Chemistry (2000) at the University of Mar del Plata, where she also received her Ph.D. in Materials Science (2004) working on polymer dispersed liquid crystals (PDLC) under the supervision of Prof. Roberto J. J. Williams (Institute of Materials Science and Technology, INTEMA, UNMdP/CONICET). In 2004 she was awarded a Postdoctoral Antorchas fellowship and she moved to the University of Santiago de Compostela (Nanotechnology and Magnetism group), Spain, where she worked with Prof. Arturo López Quintela in the synthesis and characterization of metal and oxide nanoparticles. After one year she was awarded a Marie Curie European Postdoctoral Fellowship (International Incoming Fellowship, 6th framework Programm) to work in the arrangement of nanoparticles in polymer multiphasic systems. She returned to Argentina in December 2007.

She is currently working at INTEMA (Nanostructured Polymers Group) as staff researcher (independent researcher CONICET). She has be in charge of several research projects in the field of polymer materials and nanomaterials. She has participated as Argentina representative in international cooperation official missions to USA, Portugal, Italy, Mexico and South Africa in the framework of I+D cooperation agreements in Nanoscience and Nanotechnology.

Their main research interests are related with the design and application of functional polymers and nanocomposites.

Closing the Gap – High Precision Printing from Lab to Fab


Dr. Ruth Houbertz. Physicist, Multiphoton Optics GmbH cofounder, CEO & Managing Director since 2014, in 2013 CTO. From 2000-2012, at Fraunhofer ISC in different technical and management positions. Worked at Sandia Nat.’l Labs in Livermore (USA). Solid background in materials development, processing, technologies, analyses, hardware, and software. Invented more than 90 patents, evaluator and referee for national and international ministries, journals, etc. Among the 10 best enterprises for the finals of the Industry Award of the Hannover Exhibition 2017, Finalist in the Prism Award 2015 and 2017, Cowin Award of Entrepreneurship 2014, Green Photonics Award 2013, Fraunhofer Award in 2007 among others. Active member in EPIC, IEEE, VDI, Bayern Photonics, SPIE Senior Member, Session Chair since more than one decade in Optical Interconnects and Emerging Technologies at Photonics West, participation in Industrial and Women in Optics Panels, Women in Optics Calendar, invited and contributed talks at international conferences, workshops, and exhibitions.

Development of a MEMS Loudspeaker or ‘The Role of Luck in MEMS development”


Shay Kaplan has an academic background in chemistry physics and material science. Infrared detector development and manufacturing group manager, Photolithography section head and a development program manager in a microelectronics fab. A founder and manager of A small MEMS foundry and an entrepreneur and co-founder of several companies, including Audiopixels LTD, a MEMS loudspeaker company.

Computation with biological agents


Dan, who is the founding Chair of the Department of Bioengineering at McGill University, has a PhD in Chemical Engineering, a MS in Cybernetics, Informatics & Statistics and a MEng in Polymer Science & Engineering. He has published 100+ papers in peer-reviewed scientific journals, a similar number of full papers in conference proceedings and 6 book chapters. He has edited one book (on microarray technology and applications), and edited or co-edited the proceedings of 30+ conferences. Dan is a Fellow of the International Society of Optical Engineering (SPIE). Dan’s present research aggregates around three themes: (i) micro/nano-structured surfaces for micro/nano-arrays fabricated via classical microlithography, micro-ablation and Atomic Force Microscopy; (ii) dynamic micro/nanodevices, such as microfluidics/lab-on-a-chip and devices based on protein molecular motors, with applications in diagnosis, drug discovery and biocomputation devices; (iii) intelligent-like behaviour of microorganisms in confined spaces, which manifests in the process of survival and growth, with applications in biocomputation and biosimulation.

Probing emergent phenomena through large-scale atom manipulation


Sander Otte received his PhD from Leiden University, The Netherlands, in 2008. He was involved in pioneering experiments on inelastic spin excitations on individual atoms at IBM Research (San Jose, USA). During his postdoc at NIST (Gaithersburg, USA) he participated in the construction of a mK STM facility, and used this for the study of Landau quantization in epitaxial graphene. From 2010, Otte runs a research group at Delft University of Technology, The Netherlands (tenured 2015), focusing on assembly of atomic lattices for the purpose of studying correlated electrons. In 2016, his group developed a new technique to manipulate atoms on a large scale and used this technique to write a kilobyte in atoms – the most complex atomic structure built to date.

How to interface the brain with MEMS-based implants


Patrick Ruther studied physics and received the Ph.D. degree in mechanical engineering in 1996. Between 1996 and 1998, he was PostDoc at the Research Center Karlsruhe, Germany, developing LIGA-based microoptical components and systems. Since October 1998, he is Senior Scientist at the Department of Microsystems Engineering (IMTEK), University of Freiburg. His focus is on the design, fabrication, and characterization of CMOS-compatible MEMS devices for biomedical applications in neuroscience. He coordinated the EU project NeuroSeeker targeting the next generation of neural probes comprising electrical and optical functionality. He is a cofounder of the spin-off company ATLAS Neuroengineering bvba, Belgium.

Quantum dots for nanobioimaging and diagnostics


Beate Saegesser Santos has earned her Doctor degree in Inorganic Chemistry in 2002 and, since then, she has joined as full professor the Pharmaceutical Sciences Department at the Universidade Federal de Pernambuco in Brazil. She is the co-leader of the Biomedical Nanotechnology research group (NanoBio), a member of the Brazilian National Institute of Photonics (INFo), of the Brazilian Chemistry Society and, also, an AAPS member. The main topics of her research field focuses the preparation, characterization and the design of II-VI semiconductor quantum dots, mainly for applications at the biological interface. She has published articles, patents and Book Chapters showing diverse applications of quantum dots as fluorescent tools to label cells and tissues (i.e. red blood cells, yeast cells, benign and malign mammary tumor cells and tissues in vitro, glial and glioblastoma cells in vivo). She has recently co-edited a Book entitled “Quantum Dots: Applications in Biology” depicting some of the main applications of quantum dots. She has supervised many post-docs, graduate and undergraduate students and earned many prizes including the SPIE 2005 Award of the International Society for Optical Engineering.  Her current focus deals with (i) the engineering of fluorescent bioconjugates for the detection of specific pathological antigens and antibodies,  (ii) the design of new versatile theranostic and/or multipurpose diagnostic nanophotonic tools, (iii) the development of new pharmaceutical formulations for photodynamic therapy and (iv) the design of new electrochemical-nanophotonic based biosensors using nanoparticles and/or fluorescent molecules.

Conformal nanogaps fabricated by cleavage of single-crystal silicon on MEMS


Toshiyuki Tsuchiya received the M.S. degree from the University of Tokyo, Japan, and the Ph.D. degree from Nagoya University, Japan, in 1993 and 2004, respectively. He worked with Toyota Central Research and Development Laboratories from 1993 to 2004. In 2004, he joined Kyoto University as an Associate Professor and now belongs to the Department of Micro Engineering, Kyoto University, Japan. He is currently engaged in the research of silicon micromachining, its application in MEMS, the mechanical property evaluation of micro materials, and the reliability of MEMS devices. He has been involved in several conferences and workshops dealing with MEMS and microsystems, including the International Conference on Solid-State Sensors and Actuators (Transducers), the international conference on Micro Electromechanical Systems (MEMS), Asia-Pacific Conference of Transducers and Micro-Nano Technology (APCOT) and many domestic conferences. He was a general chair of the IEEE MEMS 2013 in Taipei. Dr. Tsuchiya is an Editorial Board Member of Journal of Micromechanics and Microengineering, Institute of Physics Publishing and Micro & Nano Letters, the Institute of Engineering and Technology. He was honored with R&D 100 Award for research in “Thin film Tensile Tester” in 1998 and IEC 1908 Award in 2012 by the International Electrotechnical Commission. Dr. Tsuchiya is a member of IEEE, MRS, the Institute of Electrical Engineers of Japan, the Japan Society of Applied Physics and the Japan Society of Mechanical Engineers.

Micro Supercapacitors for Energy Storage Based on Prototyping of Nanomaterials


Xiaohong (Ellen) Wang is a professor in Tsinghua National Laboratory for Information Science and Technology, Institute of Miroelectronics, Tsinghua University in China. She received her Ph. D degree in Mechanical Engineering, Tsinghua University in 1998. As a visiting scholar, she did the research on the electrode materials of micro SOFC in Stanford University from Nov. 2005 to Oct. 2006. She also had a short visiting research experience in Hong Kong University of Science and Technology and UCLA, on micro fuel cells and nano- photodetector devices in 2001 and 2007, respectively.
Her research is on the fields of MEMS/NEMS design, fabrication, materials, assembly, and integration technologies, in particular on Power-MEMS, like micro fuel cell (uDMFC), micro supercapacitors, silicon-based micro lithium batteries, etc. She is also interested in combining Bio & Power MEMS, such as biological microgenerators.
She has served several international conferences as TPC member, like IEEE-MEMS, Transducers, IEEE-NEMS, and PowerMEMS. She also was the General Co-Chair of IEEE MEMS2016, held in Shanghai, China. She is an Associate Editor of IEEE/ASME JMEMS and PNG Microsystems & Nanoengineering.

Engineering and Processing of 10 nm 3D structures for FET applications


Lars-Erik Wernersson received the M.S degree the Ph.D. degree in Solid State Physics at Lund University in 1993 and 1998, respectively. Since 2005 he is Professor in Nanoelectronics at Lund University, following a position at University of Notre Dame 2002/2003. His main research topics include nanowire- and tunneling- based nanoelectronic devices and circuits for low-power electronics and wireless communication. He has authored/co-authored more than 200 scientific papers. He has been awarded two individual career grants and he served as Editor for IEEE Transaction on Nanotechnology. He is coordinator for the H2020 project INSIGHT.

OSTE polymer – a new material for biomedical micro- and nanosystems


Wouter van der Wijngaart received the M. Sc. degree in Electrotechnical Engineering, the Degree of Philosophic Academy and the Mathematics Education Degree, all from the Katholieke Universiteit Leuven, Belgium, in 1996. Wouter received the Ph. D. degree in microsystem technology at KTH in 2002, where in 2005 he promoted to Associate Professor and in 2010 to full Professor. Wouter is currently leading the research in micro- and nanofluidic systems at KTH, with a research focus on lab-on-chip systems for medical applications.

Gold Sponsors

Silver Sponsors

Other Sponsors